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INTRODUCTION 

The success of finding the exact critical Rayleigh number for 
a fluid layer with unstable linear temperature profile attracted 
many researchers to the stability theory [l]. Sparrow and his 
coworkers have investigated the instability when the layer 
has uniform heat source [2]. Examples of heat generation in 
fluid layer are abundant, for instance, electric current in a 
semiconducting fluid such as glass and electrolyte generates 
Joulean heating. Heating of flowing water in a solar collector 
and radiative cooling of molten glass in a forehearth are such 
examples too. While Sparrow et al. investigated the case of 
fixed boundary temperatures and rigid surfaces only, prac- 
tical cases are mostly with convection boundary condition 
(with rigid or free upper surface), which means the upper 
surface has certain thermal resistance with the environment 
and the lower surface also has an insulation layer. Thus, the 
general case of convection boundary condition and hydraulic 
upper surface condition needs to be investigated extensively, 
however, it has not been studied for the past 30 years. This 
was the motivation for this study. Though conventional tech- 
niques have been employed in this study, the results are 
believed to be of interest to the industries manufacturing 
glass, batteries, solar collectors, etc. 

The study of convection initiation in a fluid layer of 
unstable temperature profile provides many interesting 
phenomenological aspects such as the effects of enclosure 
geometry, surface tension, electric field, sudden heating, 
property variation, radiative heating, etc. Many published 
literature is available. The linear stability theory is most 
frequently employed in the analysis. It is also used here 
to find the neutral stability limit, i.e. the limit of decaying 
fluctuation without oscillation. The principle of exchange of 
stability is not proved, however, for layers with internal 
heating so that the results given in this paper are not a 
complete description of the stability. 

PROBLEM DEFINITION, FORMULATION AND 
NUMERICAL SCHEME 

Figure 1 shows a stationary fluid layer with uniform 
internal heat source. The upper surface may be hydraulically 
rigid or free and the lower surface is rigid. The upper surface 
is exchanging heat with the neighboring gas with a given heat 
transfer coefficient. The bottom also has a fixed heat transfer 
coefficient and surrounding temperature (these are not 
necessarily the same as the top surface values). The stationary 
state is maintained by a certain energy balance between the 
heat generation and the heat transfers with the upper and 
the lower surrounding temperatures. 

The governing equations to describe the motion of the fluid 
layer are equations of continuity, momentum and energy 
balance. With Boussinesq approximation, they are written 
as, 

au, 
ax, 

(2) 

?T cl(u,r) ?‘T 
x+ ix, 

=r-+Y 
d.T,.X, pep 

where the repeated indices denote summation over ,j = 1 to 
3 and the Kronecker delta Sl is unity when i = 3 and zero 
otherwise. The boundary conditions are ; for velocity com- 
ponents u, and u2 which are parallel to the surface, u, = 0 
(rigid) or au,/& = 0 (free). For u, (or w), ui = 0 at the surface 
whether it is free or rigid. For r, k ?T/& = - h(T- T,< (,) at 
z = L and kaT/& = h(T- TrB) at 3 = 0. When the layer is 
stable, no motion is observed and the temperature dis- 
tribution is determined solely by conduction. This state is 
denoted by subscript s (for stationary). When the stationary 
state is unstable, any perturbed fluctuation (with super- 
script *) grows and gives an infinitesimal change on the tempera- 
ture field. The velocity U, = u,,+uT and the temperature 
T = T,+ T* are introduced into the above equations and 
arranged to give the governing equations for the perturbation 
quantities. A lengthy manipulation of the governing equa- 
tions following the procedure of Pellew and Southwell [I] 
leads to the following 6th-order partial differential equation 
for the z-direction velocity perturbation w* 

Fig. I. Schematic diagram of the problem. 
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NOMENCLATURE 

;,c, 
wavenumber u’ z-direction velocity 

ii 
coefficient of the power series forf”‘(Z) x, Y horizontal coordinates 
Biot number, hL/k 

CP specific heat ; 
vertical coordinate 
= z/L. 

coefficient off”‘(Z) 
,;+Z) h omogeneous solutions of F-equation, 

equation (7), i = 0, 1,. .5 Greek symbols 
F amplitude function of the normal mode for thermal diffusivity 

W* ; volumetric thermal expansion coefficient 

9 gravitational constant s: Kronecker delta (= 1 when i = j and 0 
G exponential factor otherwise) 
h heat transfer coefficient v kinematic viscosity 
H amplitude function of the normal mode for P fluid density 

T* 0 the exponential growth rate. 
k thermal conductivity 
L depth of the fluid layer 
NS dimensionless heat source strength Subscripts 

cjL2/2k(TB- TV) B, U bottom and top surfaces 

P pressure C critical 

:* 
heat source strength per unit volume i>j components along Cartesian coordinates 
modified Rayleigh number max maximum temperature 
gB(T,,,- T,)(L-z,,J3/av S stationary state 

Ra’ original Rayleigh number gb(r,- Tu)L3/av 0 reference 
t time co surrounding. 
T temperature 
T,O dimensionless steady temperature, 

T,I(T, - Ts) Superscript 
u velocity * perturbed quantity. 

where the operator A$ means Laplacian for x and y, i.e. 
(P/8x2) + @‘jay’). 

(7) 

The fluctuation velocity and temperature are assumed where the dimensionless temperature Tf is defined as Tf/ 

to have product form Eli* = (a/L)F(z)G(x, Y) exp(ut) and (Tu - TB). It is readily obtained from equation (3) and the 

T* = (TB- T,)H(z)G(x, y) exp(at) where the exponential 
gradient is found to be 

factor G and amplitudes F and Hare all dimensionless quan- 
tities. The factor G satisfies, g= [1-Ns(l-2Z)] (8) 

V&G+ ; 
0 

’ G = 0. (5) where the dimensionless heat source Ns is defined as, fol- 
lowing Sparrow et al. [2], 

Functions satisfying equation (5) can express any two- 
dimensional periodic pattern of convection roll when viewed 
from above. The wavenumber a appears as G represents a 
convection pattern infinitely repeated on the x-Y plane. A 
typical example of normal modes satisfied by G is the real 
part Of .$RTv+aY)/L where a2 = a: +a:. When a, = 0, G 
expresses roll cells stretching its axis along the x-axis with 
periodic repetition in the Y-direction. In finding the stability, 
the real part of 0 is assigned zero and the critical Rayleigh 
number for non-oscillatory mode is obtained by further 
assigning the imaginary part of (r zero. It can also be shown 
that Hand F have the following relation. 

CjL* 
Ns = 2k( TB - Tu) 

The boundary conditions for Fare given as follows. At the 
bottom, the velocity is zero. 

F(0) = 0. (10) 

Also, the x- and Y-direction velocities are zero and thus from 
the continuity, &*/dz = 0, i.e. 

dF(O)/dZ = 0. 

Since bc* = 0 at the top, 

(11) 

sB(Ts - TuW3 
VCi (6) F(1) = 0 

If the upper surface is rigid, 

(12) 

where the vertical coordinate has been normalized as 2 = z/L 
and we have the original Rayleigh number Ru” defined as 

dF(l)/dZ = 0. (13) 

g&TB - Tu)L3/cw. The expression for w* is introduced into However, if it is free, then since the vertical direction gradi- 
(4) together with equation (5) to give a 6th-order ordinary ents of the horizontal velocity components are zero at the 
differential equation for Fin dimensionless form, top, we get, by differentiating the continuity equation with 2, 
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d*F(l)/dZ’ = 0. (14) 

The upper and lower surfaces are subject to convection 
boundary conditions, i.e. 

aH(1) 
dZ 

- - YH(l) 

(16) 

The dimensionless heat transfer coefficients /r&/k and h,L/k 
are the Biot numbers, Bi, and Bie, respectively. 

Equation (7) can be analyzed in many ways and any solu- 
tion method is acceptable if the numerical accuracy is good 
and the computation time is reasonable. The power series 
expansion which Sparrow et al. [2] used is taken in this study. 

Six homogeneous solutionsf’@’ (Z),f”‘(Z), ..f”‘(Z) are 
obtained from equation (7) and they are expanded in power 
series as, 

F(z) = i C,.f”‘(Z)l (17) 
4=0 

(18) 
n-0 

This equation is introduced into equation (7) and the recur- 
rence formula is obtained for the coefficient b,!?. For n > 6, 

),,I” = 
3a2 3a4 

n b”’ z - 
n(n- 1) I’ 

b”‘, 
n(n-I). .(n-3) ‘I 

ah 
b”’ 

+n(n-l)...(n-5) ” h 

_ ~‘Ra~[~~~~~+:nl~~~bP’~l ( 1 9 )  

where bt’, is zero when n < 7. Linear independence among 
f”‘(z) values is guaranteed by making bl? = S:, (Kronecker 
delta) for 0 < n < 5. 

Normally, the coefficients C, for f”‘(z) are determined 
from the boundary conditions. Since the boundary con- 
ditions are all homogeneous, the coefficients C, can be non- 
trivial only when the determinant of the coefficient matrix 
vanishes, Thus the objective is to find the eigenvalue Ra" 
which makes the determinant zero at a given value of a, and 
then to choose the least value of Ra” (the critical Rayleigh 
number) and the associated a. 

Before proceeding further, it is worthwhile to check the 
meaning of Ns. Natural convection may occur only when the 
temperature gradient aT,/& is negative globally or locally. 
This situation can never happen when - I < Ns < 0 with 
TB < Ir,. When Ns is positive, T, > T,,. The maximum tem- 
perature occurs at Z = 0 when 0 < Ns < 1 (the maximum 
temperature and the location are notated as T,,,,, and z,,,). 
We define the modified Rayleigh number Ra as, 

Ra =sB(T~,,-T~)(L-z,,,)~~‘cc~. (20) 

When 0 < Ns < 1, Ra is the same as the original Rayleigh 
number Ra”. When Ns > 1 or Ns < - 1, the maximum tem- 
perature occurs at Z = f - (1/2Ns) and 

T nldl (21) 

thus making, 

The factors influencing Ra are Ns, Bi, and Bi,. 

(22) 

The modified Rayleigh number was extensively obtained 
for all possible combinations of the following parameters ; 
free or rigid upper surface : Ns = k cc, - 10, - 3, - 2, - I .5. 
0, 0.1, 0.3, I, 3, IO: Bi, = 0, 0.1, 0.3, 1, 3. 10, x: Bi,, = 0, 
0.1, 0.3, 1, 3, IO. ;c. When Ns is + co, the upper and the 
lower surfaces have a same temperature. When it is zero, 
there is no heat generation. When the Biot number is zero, 
the surface has a heat flux boundary condition, and when it 
is infinitely large, the surface temperature is fixed. For every 
combination of Ns, Bi, and Bi,, the wavenumber LI was 
varied and the eigenvalue Ra was calculated using a modified 
linear interpolation method [3]. The wavenumber was varied 
in the external loop and the minimum Ra, i.e. Ra, was found. 
Variation of a was made using a golden section search. When 
the variations of a and Ra were within IO-’ and 10 ‘, respec- 
tively, it was assumed to have completely converged. Seventy 
terms were retained in computing f’“(Z). Actual com- 
putation was made using a CRAY-2S computer. Computing 
time was very short and it was not a significant issue. Some 
computed results can be compared with those from other 
sources. Specifically, when Ns = 0 and the upper and the 
lower surfaces are rigid with fixed temperatures, computed 
Ru, and a are 1707.762 and 3.1163, respectively. This result 
IS in perfect agreement with the accurate results of Fujimura 
and Kelly (1707.762 and 3.116324, respectively) [4]. When 
Ns # 0, some limited results for rigid upper surface and 
Bin = Bi, = cc are available for comparison [2]. Again the 
agreement is good within 2 digits below the decimal point, 

When both of the upper and the lower Biot numbers were 
zero, calculation procedure frequently experienced difficulty 
in obtaining Ru,. This happened as the critical wavenumber 
became zero. whose region will be given in the following 
section. If it happened, very small Bi, (lo-‘, 10 ‘, 10 ’ and 
10 mH) with Bi,, = 0 was successively tried and the asymptotic 
behavior was examined by treating the critical Rayleigh num- 
ber as an infinite sequence. This method was very accurate 
and the induced error of Ra, was at most 2.4 x 10 4. When 
Ns approaches - I from the left, it corresponds to the lim- 
iting case of heat flow mainly to the bottom while the upper 
surface does not transmit any heat. The bottom is at lower 
temperature than the top and convection is difficult to occur. 
The originally defined critical Rayleigh number Ruf thus 
increases indefinitely. For this reason, numerical com- 
putation was performed up to Ns = - I .5. 

RESULTS AND DISCUSSIONS 

The computed results of Ra, and a, are compressed into 
Figs. 2 and 3 in 3D plots. Not all the computed results are 
presented in the figures for the following reasons. The critical 
Rayleigh number or the wavenumber for any BiB lies between 
the extreme cases of 0 and co, and the dependence on Bi, is 
monotonic. Thus, these two extreme cases are shown. 

Generally speaking, the modified critical Rayleigh number 
Ra, is between 100 and 1700 for all the tested cases and it is 
greater for greater Bi,. With a few minor exceptions, it is 
greater when Bin increases and when the upper surface is 
hydraulically rigid [see Figs. 2(a) and (b) and Figs. 3(a) and 
(b)]. Its variation with the Biot numbers is roughly within 
50% of the maximum Rq. 

When Ns is less than - 1, Ra, is found to be almost insen- 
sitive to the variation of Bin whether the upper surface is 
free or rigid. Though the originally defined critical Rayleigh 
number Raz becomes very large as Ns approaches ~ 1 from 
_ IX with other parameters fixed, the modified critical Ray- 
leigh number Ra, does not change very much. It may be 
explained from the fact that the actual convection takes 
place mostly in the upper part where ar,/ai is negative. The 
thickness of the part of negative temperature gradient is 
decreased as NJ approaches - 1, and Ra, based on the 
reduced length is very insensitive to the change of Ns. When 
Ns is positive and less than unity, the maximum temperature 
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(b) 
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Fig. 2. The modified critical Rayleigh number (a) SC = co and (b) BiBGO and the wavenumber (c) EiB = m 
and (d) BiB = 0 for hydraulically free upper surface problem. (Note that BiU scale is not logarithmic in 
0.1 < Sio < 10, and it has no scale outside. Also, Ns has logarithmic scale in 1 < ]Ns] < 10 and it has no 

scale elsewhere. Identify the curves aligning the left ends vertically on the Ns axis.) 

occurs at the bottom. The two critical Rayleigh numbers Ru, 
and Ruz are the same. It increases with greater lower and/or 
upper Biot numbers. The effect of Ns is small in this region. 
As Ns grows farther beyond 1, it changes more or less mon- 
otonically and asymptotically. When Ns = 10 or greater, the 
upper surface Biot number has little effect on Ra,, whether 
the upper surface is free or rigid. The hydraulic condition of 
the upper surface is insignificant in determining Ra, when Ns 
is very large. 

As shown in Figs. 2(c) and (d) and Figs. 3(c) and (d), the 
critical wavenumber a, lies between 1 and 8 mostly 
(maximum is found to be about 12.5). It is greater when 
Bit is greater. No general trend is found regarding which 
hydraulic boundary condition at the upper surface gives 
greater a,. A strange behavior has been found ; a, approaches 
zero when the upper and the lower Biot numbers are all zero 
and when 0 < Ns < 4.489 with free upper surface, or when 
0 < Ns < 4.70 I with rigid upper surface. This happens when 
the gradient of the eigenvalue Ra with respect to the 
wavenumber a is positive at a = 0. The asymptotic approach 
described in the previous section was applied to find Ra, in 
this case. Note that a, = 0 means very large convection cell. 

When Ns approaches -- 1 from the negative direction, a, 

becomes large. This means that the convection cells are small 
when they are induced by internal heat generation in a fluid 
layer with lower bottom temperature than the top tempera- 
ture. This observation is also in accordance with that of 
Sparrow et al. [2]. 

CONCLUSIONS 

A linear stability theory has been applied to a fluid layer 
with internal heat generation subject to upper and lower 
convection boundary conditions. Dimensionless heat gen- 
eration number Ns has been used to transform the original 
critical Rayleigh number to a modified one (Ra,). Regions 
of instability for Ns have been examined and Ra, and a, are 
computed for 0 = 0 using power series expansion. 

Generally, Ra, is between 100 and 1700 for all tested cases 
and it is greater for greater Bi,. It is roughly greater when 
Bio increases and when the upper surface is hydraulically 
rigid. The wavenumber a, is between 1.0 and 12.5 for most 
cases. It is zero when the upper and the lower Biot numbers 
are zero and Ns lies between 0 and about 4.5. 
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(b) 

-OJ Ns r -co Ns 

Cd) Cd) 

Fig. 3. The modified critical Rayleigh number (a) Bia = co and (b) Bis,o and the wavenumber (c) Bi, = co 
and (d) for Bia = 0 for hydraulically rigid upper surface problem. (Comments on the axes are the same as 

in Fig. 2.) 
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